- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Barta, Miroslav (1)
-
Booth, Mark (1)
-
Brajša, Roman (1)
-
Chai, Yi (1)
-
Cicone, Claudia (1)
-
Cordiner, Martin A (1)
-
Costa, Joaquim (1)
-
Di_Mascolo, Luca (1)
-
Fleishman, Gregory (1)
-
Gary, Dale (1)
-
Gimenez_de_Castro, Guillermo (1)
-
Ginsburg, Adam (1)
-
Gunar, Stanislav (1)
-
Hales, Antonio (1)
-
Henshaw, Jonathan (1)
-
Hudson, Hugh (1)
-
Johnstone, Doug (1)
-
Kirkaune, Mats (1)
-
Klaassen, Pamela (1)
-
Klaassen, Pamela D. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The canonical picture of star formation involves disk-mediated accretion, with Keplerian accretion disks and associated bipolar jets primarily observed in nearby, low-mass young stellar objects (YSOs). Recently, rotating gaseous structures and Keplerian disks have been detected around several massive (M > 8 M⊙) YSOs (MYSOs)1–4, including several disk-jet systems5–7. All the known MYSO systems are in the Milky Way, and all are embedded in their natal material. Here we report the detection of a rotating gaseous structure around an extragalactic MYSO in the Large Magellanic Cloud. The gas motion indicates that there is a radial flow of material falling from larger scales onto a central disk-like structure. The latter exhibits signs of Keplerian rotation, so that there is a rotating toroid feeding an accretion disk and thus the growth of the central star. The system is in almost all aspects comparable to Milky Way high-mass YSOs accreting gas from a Keplerian disk. The key difference between this source and its Galactic counterparts is that it is optically revealed rather than being deeply embedded in its natal material as is expected of such a massive young star. We suggest that this is the consequence of the star having formed in a low-metallicity and low-dust content environment. Thus, these results provide important constraints for models of the formation and evolution of massive stars and their circumstellar disks.more » « less
-
Wedemeyer, Sven; Barta, Miroslav; Brajša, Roman; Chai, Yi; Costa, Joaquim; Gary, Dale; Gimenez_de_Castro, Guillermo; Gunar, Stanislav; Fleishman, Gregory; Hales, Antonio; et al (, Open Research Europe)Observations at (sub-)millimeter wavelengths offer a complementary perspective on our Sun and other stars, offering significant insights into both the thermal and magnetic composition of their chromospheres. Despite the fundamental progress in (sub-)millimeter observations of the Sun, some important aspects require diagnostic capabilities that are not offered by existing observatories. In particular, simultaneously observations of the radiation continuum across an extended frequency range would facilitate the mapping of different layers and thus ultimately the 3D structure of the solar atmosphere. Mapping large regions on the Sun or even the whole solar disk at a very high temporal cadence would be crucial for systematically detecting and following the temporal evolution of flares, while synoptic observations, i.e., daily maps, over periods of years would provide an unprecedented view of the solar activity cycle in this wavelength regime. As our Sun is a fundamental reference for studying the atmospheres of active main sequence stars, observing the Sun and other stars with the same instrument would unlock the enormous diagnostic potential for understanding stellar activity and its impact on exoplanets. The Atacama Large Aperture Submillimeter Telescope (AtLAST), a single-dish telescope with 50m aperture proposed to be built in the Atacama desert in Chile, would be able to provide these observational capabilities. Equipped with a large number of detector elements for probing the radiation continuum across a wide frequency range, AtLAST would address a wide range of scientific topics including the thermal structure and heating of the solar chromosphere, flares and prominences, and the solar activity cycle. In this white paper, the key science cases and their technical requirements for AtLAST are discussed.more » « less
An official website of the United States government
